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Objective of Watershed Runoff Analysis  

Engineering design work 

1. To provide design discharge information for engineers to 

perform the design work at target positions. 

2. Target positions may locate at anywhere in the watershed. 

3. Working time is usually not strictly limited.  

 

Real-time flood forecasting 

1. To provide incoming discharge for authorities to disseminate 

flooding information and to perform flood disaster control. 

2. Target positions may locate at anywhere in the watershed. 

3. Working time is usually strictly limited.  
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Conventional Watershed Runoff Modeling  

 Linear system model / black-box model /conceptual model 
 unit hydrograph (UH; Sherman, 1932) 
 instantaneous unit hydrograph (IUH) 
 time-area method (Clark, 1945)  
 linear reservoir method (Nash, 1957) 
 tank model (Sugawara, 1974) 
 …… 
 

Model input requirement 
  watershed rainfall & flow records 
     for model parameters calibration 
 

Practical application problems 
 The models can not be applied to ungauged watersheds, and  
    simulation is poor for watersheds with highly nonlinear & 
    time-variant characteristics.  

FOR IT
W

 O
NLY



4 

Contemporary Watershed Runoff Modeling  

 Grid-based numerical models 

 kinematic-wave watershed model  

 diffusion-wave watershed model 

 dynamic-wave watershed model  

    

Model inputs requirement 

     digital topography data 

 land cover data 

 channel cross section data 

     rainfall records 

   

Practical application problems 

 Lots of computing time is required for runoff simulation. 

Consequently, the gird-based model is basically impossible to be 

applied for real-time flood forecasting.  
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All Purposes Watershed Runoff Modeling 

The model should be derived based on watershed 

geomorphologic characteristics. So, it can be applied 

to any location with/without flow record data.  

It should be a nonlinear & time-variant model to 

account for the hydrodynamic phenomena of the 

watershed. 

The model should be performed in an efficient way to 

conduct the real-time flood forecasting work. 
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Previous Geomorphology-Based Modeling 

 

 

SCS (1957): synthetic hydrograph method 

Henderson and Wooding (1964): overland-plane model 

Wooding (1965): V-shaped overland-plane model 

Woolhiser (1969): converging overland-plane model 

Rodriguez-Iturbe and Valdes (1979):  

    geomorphology-based 

    instantaneous unit hydrograph (GIUH)  

0.6L cT T

2.67b pT T

( , , , )cT f A L S

( , , , )pQ f A L S

( ) ( , , )   finite difference approachQ t f W L S( ) ( , , , , )   finite difference approacho c o cQ t f L L S S B( ) ( , )   finite difference approachQ t f L r
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Geomorphologic Instantaneous Unit Hydrograph (GIUH)  
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 unit rainfall → N independent raindrops   

xo1x1x2x3 

xo1x1x3 

xo2x2x3 

xo3x3 

 

xo1→ x1→ x2→ x3 

xo2→ x2→ x3 

Q 

t 

 
xxxxxxOA kjiioii

P  P  PPwP 

  watershed geomorphologic IUH  
  (Rodriguez-Iturbe & Valdes, 1979) 
 
 
 
   where f(t) is the runoff travel time distribution  

 the probability for a raindrop adopting  
   a specified path 

 total runoff travel time along the path 
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Kinematic-Wave Overland Travel Time 

  travel time for ith-order overland-flow 
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  travel time for ith-order channel-flow 

   (Lee and Yen, 1997) 
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the inflow depth of the ith-order channel due to  

water transported from upstream reaches  

(Lee and Yen, 1997) 
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Kinematic-Wave-Based GIUH Model (KW-GIUH) 
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Kinematic-wave-based geomorphologic IUH (Lee and Yen, 1997) 

nonlinear & time-variant model  

where                        can be determined by comparing coefficients in partial 

fractions after applying the Laplace transformation.  
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Time varying & Nonlinearity of the KW-GIUH 
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Flow travel time estimation 

the IUH is a function of the rainfall intensity 

a set of IUHs instead of only one IUH for a specified watershed    
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Runoff simulation in Heng-Chi watershed  

 Storm event in Oct. 2000 ( no = 0.8,   nc= 0.05 ) 
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Channel Roughness Coefficient (Chow, 1959)  
 

 

reasonable range 

0.012 – 0.05 
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Overland Roughness Coefficient (SCS, 1986)  
 

 

reasonable range 

0.011 – 0.8 
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Runoff Simulation in Szu-Chi-Lan Watershed   

 Storm event in July 1996 ( no = 16.7,   nc= 0.05 ) 
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V-Shaped Watershed Considering Subsurface Flow 

effective 
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V-shaped model for  

ith-order subwatershed 

Field investigation showed that the surface flow occurs only 

on the partial contributing area (PCA) during a storm. 

FOR IT
W

 O
NLY



18 

Flow path probability 

     surface flow 

     subsurface flow 

Runoff travel time 

     surface flow 

     subsurface flow 

Surface & Subsurface IUH 

KW-GIUH Model Considering Subsurface Flow 
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Runoff Travel Times Estimation 
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Surface- & subsurface-flow KW-GIUH 
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Runoff Simulation in Szu-Chi-Lan Watershed 

Storm event in July 1996  

( no = 0.6, nc= 0.05, K0= 0.011 m/s,     = 0.5, RPCA= 0.21 ) 
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Spatial Distribution of Partial Contributing Area 
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RPCA and Rainfall Depth for Specified Duration  

20 40 60 80 100 120 140 160

R6hr (mm)

0

0.2

0.4

0.6

0.8

1

R
a
ti

o

Heng-Chi 

Relationship between max. 6-hr total rainfall depth D6hr and the 
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Influence of RPCA on IUH  
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• A higher RPCA value results in a sharp hydrograph because the 

  surface-flow mechanism dominates the rainfall-runoff process.  

• A lower RPCA value results in a mild hydrograph because the 

  subsurface-flow mechanism is dominant. 
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Comparison of Surface- and Subsurface-Flow IUHs   

The rising limb of the IUH is dominated by surface-flow mechanism, and the 

recession limb is dominated by subsurface-flow mechanism. 
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Runoff Simulation in Heng-Chi Watershed  
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Chang, C.-H., Lee, K. T. (2008). Analysis of geomorphologic and hydrological characteristics 

            in watershed saturated areas using topographic-index threshold and geomorphology 

           -based runoff model, Hydrological Processes, 22, 802-812.   
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Input of KW-GIUH Model 
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Digital Elevation Model (DEM) 

 

 

 

    

40m 

Flow direction is determined according to 

the elevation in the eight adjacent cells 

• Flow direction determination 

• Depressionless 

• Flow accumulation value calculation 

• Channel network extraction 

• Subwatershed delineation 

• Geomorphologic factors calculation 

 

digital elevation dataset 
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Geomorphologic Factors Calculation－DEM 
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   Resolutions of the channel network can be determined  by using 

different threshold areas Ath to extract the network from the digital 

elevation dataset for different objectives of design work. 

Ath=185 cells (0.296km2) 

for mainstream flood control work 

Ath=30 cells (0.048km2) 

for soil conservation engineering 

Channel Network Resolution  
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Overland Roughness Determination – SPOT Image 

Applying remote sensing images to classify the land cover 

distribution of a watershed for overland roughness 

coefficients determination. 
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Merits of the KW-GIUH Model 
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Influence of rainfall intensity can be considered  

Influence of environmental changes can be simulated 

Flow frequency analysis in ungauged areas can be performed 

Geomorphologic factors can be obtained by using a DEM 
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Flow Frequency Analysis in Ungauged Watersheds  

Lee, K. T. (1998). “Generating design hydrographs by DEM assisted geomorphic  

        runoff simulation: a case study,” J. Am. Water Resour. Assoc., 34(2), 375-384.  
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Flow Attenuation in Ungauged Reservoir Watershed 

Lee, K. T., Chang, C.-H., Yang, M.-S., and Yu, W.-S. (2001). “Reservoir attenuation of 

              floods from ungauged basins,” Hydrological Sciences Journal, 46(3), 349-362.  
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Flow Analysis in Landslide-Dammed-Lake Watershed  

•  Watershed geomorphologic factors 

   and characteristic curve of the 

   landslide-dammed lake are calculated 

   using  DEM 

• Land cover condition is obtained from 

   remote sensing image analysis 

• Flow analyses are performed by using 

   KW-GIUH model and TOPMODEL 

y3 

y1 

y2 y1 

y2 

y3 



1 2 3

Lee, K. T., Lin, Y.-T. (2006). “Flow analysis of dammed-up-lake watersheds: a case 

       study,” Journal of the American Water Resources Association, 42(6), 1615-1628.  

Extensive landslide in 1999 earthquake 
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KW-GIUH & HEC-RAS for Overbank-Flow Simulation  

Lee, K. T., Ho, Y.-H., Chyan, Y.-J. (2006). “Bridge blockage and overbank flow simulations 

        using HEC-RAS in the Keelung River during the 2001 Nari typhoon.” J. Hydraulic 

        Engineering, ASCE, 132(3), 319-323.  

•  Using KW-GIUH model to estimate runoff hydrographs from subwatersheds  

    and lateral flow areas 

•  Using HEC-RAS model to simulate flood wave transport in open channel 

Containers blocked at the railway bridge in 2001 Typhoon Nari 
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Runoff Analysis in United States of America 

Illinois, U.S.A.  
Salt watershed (Area=876 km2) 
Kaskaskia watershed (Area=2692 km2) 

Yen, B. C. and Lee, K. T. (1997). “Unit hydrograph derivation for ungauged    

       watersheds by stream order laws,” J. Hydrologic Engrg., ASCE, 2(1), 1-9.  
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Sadovy watershed, Komarovka River Basin, Russian (Area=395 km2) 
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Lee, K. T., Chen, N.-C., Gartsman, B. I. (2009). Impact of stream network structure  

           on the transition break of peak flows, Journal of Hydrology, 367, 283-292.  
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Faria catchment, Palestine (Area=334 km2) 

 

Shadeed et al. (2007). “GIS-based KW-GIUH hydrological model of semiarid  

          catchments: the case of Faria catchment, Palestine. Arabian Journal for 

          Science and Engineering. 

Runoff Analysis in Palestine 
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Yasu River basin, Japan (Area=387 km2) 

 

Chiang et al. (2007). Hydrological model performance comparison through  

           uncertainty recognition and quantification, Hydrological Processes, 

           21(9), 1179-1195. 

input uncertainty = 1 mm/hr 

Runoff Analysis in Japan 
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Yi-Jin River watershed, Sichuan, China (Area=1700 km2) 
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Cao, S.-Y., Lee, K. T., Ho, J.-Y., Huang, E., Liu, X., Liu, X., Zhang, W. (2008). “Runoff Simulating  

             for Ungauged Mountainous Watersheds in Sichuan, China.” International Symposium of 

             IAHS-PUB and the 2nd International Symposium of China-PUB, Chengdu, China.  

Runoff Analysis in Mainland China 
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Convenient Operation Platform 
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Reservoir Elevation-Area Function Extraction 

    To specify a new dam site in the watershed  
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Dam-top elevation: 457 m 

Pool area: 190,400 m2  

Storage volume: 1,483,200 m3 

Dam-top elevation: 497 m 

Pool area: 969,600 m2  

Storage volume: 21,945,600 m3 

Reservoir Elevation-Area Function Extraction 
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Dam Site/Height Information System  

Dam-top 

Elevation 
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Note 

 

 

447 10 0.08 0.36    

457 20 0.19 1.48    

467 30 0.34 3.98    

477 40 0.48 7.90    

487 50 0.71 13.58  

S.-K. road 

inundated 

497 60 0.97 21.95  

S.-K. road 

inundated 

Dam-top elevation: 497 m 

Pool area: 969,600 m2  

Storage volume: 21,945,600 m3 
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Integrated System for Watershed Management 
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Integrated Geo. & Hydro. Information System (1st stage) 
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Integrated Channel-Flow-Routing System (2nd stage) 
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Integrated Inundation-Simulation System (3rd stage) 
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Geo. & Hydro. Analy. Channel Routing Sys. Inundation Simu. 

Windows-Based Integrated Analysis System 
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Window-Based Information System 

Information systems have been developed for 26 major river basins in 

Taiwan for the Taiwan Water Resource Agency from 2001-2008. 

Integrated on a user-

friendly graphical interface 

ArcView system 

Using Avenue / VB 

language to link with 

Fortran computational 

programs 

The system can be further 

extended to other purpose 

of applications FOR IT
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Conclusions 

The KW-GIUH model can be applied to gauged and ungauged 

watersheds for runoff simulation in good agreement with 

records only based on watershed geomorphologic information. 

Instead of using grid-based routing models, the IUH concept 

operating provides an efficient way for rainfall-runoff 

simulation, and the runoff nonlinearity can be considered in the 

KW-GIUH modeling. 

The integrated windows-based platform can provide both 

geomorphologic and hydrological information for engineers to 

perform the design work or real-time forecasting at any desired 

point within the study watershed.  
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HEC-RAS Module 
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Cunge (1969) 

Muskingum-Cunge Module 

Muskingum-Cunge method 
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 Considering hysteresis effect 

 Jones (1915) 
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研究方法－視窗化即時流量預報系統 

利用Visual Basic 6.0建立逕流預報系統操作介面，可顯示即
時雨量與流量回傳資訊，並可預測下數時刻之流量。 
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RPCA and Flow Hydrograph Analysis 
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Assume the partial-contributing-area ratio is equal to the ratio of 

surface-flow volume to the direct-runoff volume, that is              . 

So, the RPCA for each storm can be estimated using flow record. 
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travel time for i th-order overland  
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